Precedence–inclusion patterns and relational learning
نویسندگان
چکیده
منابع مشابه
Learning Relational Patterns
Patterns provide a simple, yet powerful means of describing formal languages. However, for many applications, neither patterns nor their generalized versions of typed patterns are expressive enough. This paper extends the model of (typed) patterns by allowing relations between the variables in a pattern. The resulting formal languages are called Relational Pattern Languages (RPLs). We study the...
متن کاملLearning Statistical Patterns in Relational Data Using Probabilistic Relational Models
Many real-world domains are relational in nature, consisting of a set of objects related to each other in complex ways. This paper focuses on predicting the existence and the type of links between entities in such domains. We apply the relational Markov network framework of Taskar et al. to define a joint probabilistic model over the entire link graph — entity attributes and links. The applicat...
متن کاملRelational Learning of Disjunctive Patterns in Spatial Networks
In spatial domains, objects present high heterogeneity and are connected by several relationships to form complex networks. Mining spatial networks can provide information on both the objects and their interactions. In this work we propose a descriptive data mining approach to discover relational disjunctive patterns in spatial networks. Relational disjunctive patterns permit to represent spati...
متن کاملMining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows
Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...
متن کاملLogical and Relational Learning
I use the term logical and relational learning (LRL) to refer to the subfield of machine learning and data mining that is concerned with learning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining and constitutes a general class of techniques and methodology for learning from str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2005
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2005.03.046