Precedence–inclusion patterns and relational learning

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Relational Patterns

Patterns provide a simple, yet powerful means of describing formal languages. However, for many applications, neither patterns nor their generalized versions of typed patterns are expressive enough. This paper extends the model of (typed) patterns by allowing relations between the variables in a pattern. The resulting formal languages are called Relational Pattern Languages (RPLs). We study the...

متن کامل

Learning Statistical Patterns in Relational Data Using Probabilistic Relational Models

Many real-world domains are relational in nature, consisting of a set of objects related to each other in complex ways. This paper focuses on predicting the existence and the type of links between entities in such domains. We apply the relational Markov network framework of Taskar et al. to define a joint probabilistic model over the entire link graph — entity attributes and links. The applicat...

متن کامل

Relational Learning of Disjunctive Patterns in Spatial Networks

In spatial domains, objects present high heterogeneity and are connected by several relationships to form complex networks. Mining spatial networks can provide information on both the objects and their interactions. In this work we propose a descriptive data mining approach to discover relational disjunctive patterns in spatial networks. Relational disjunctive patterns permit to represent spati...

متن کامل

Mining Frequent Patterns in Uncertain and Relational Data Streams using the Landmark Windows

Todays, in many modern applications, we search for frequent and repeating patterns in the analyzed data sets. In this search, we look for patterns that frequently appear in data set and mark them as frequent patterns to enable users to make decisions based on these discoveries. Most algorithms presented in the context of data stream mining and frequent pattern detection, work either on uncertai...

متن کامل

Logical and Relational Learning

I use the term logical and relational learning (LRL) to refer to the subfield of machine learning and data mining that is concerned with learning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining and constitutes a general class of techniques and methodology for learning from str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 2005

ISSN: 0304-3975

DOI: 10.1016/j.tcs.2005.03.046